Thermal Field Design of Resistance Heated SiC Crystal Growth Furnace by Solution growth

Lei He, Fuchang Li, Zhaoyang Yan, Xiaofang Qi*, Wencheng Ma, Jianli Chen, Yongkuan Xu, Zhanggui Hu

Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China

Email: xiaofangqi19@163.com

Motivation

Silicon carbide (SiC) has major applications

The solution growth method can yield

SiC crystals with low dislocation density

Compared with RF heating, resistance heating can achieve desirable thermal

[1]Roussel P, International SiC Power Electronics Applications Workshop, Sweden, 2011

fields for larger SiC bulk crystal growth[2]

JOURNAL OF SYNTHETIC CRYSTALS Vol.51 No.3 March, 22

Numerical Model

Large SiC single crystal growth system with resistance heating

furnace parameter	
Seed crystals	6 inch
Solvent radius	300 mm
Solvent height	90 mm
Heater thickness	20 mm

Case1: $L_0=70 \text{ mm}$

Case1: $L_0=100 \text{ mm}$

Side heater length	100 mm
Bottom heater length	74 mm
Crucible height	210 mm

Crucible thickness

Case1: $L_0=130 \text{ mm}$

Case1: $L_0=160$ mm

Results and discussion

Effects of heater length on thermal and flow field distribution

25 mm

 \triangle T=13K

 \triangle T=11K

Global thermal field

 \triangle T=12K

 \triangle T=14K

The fluid flow mainly driven by buoyancy convection, forced convection and Marangoni convection.

Conclusions

* With the increase of heater length, The temperature difference inside the melt first decreases and then increases. *With the increase of melt temperature difference, buoyancy convection becomes stronger, and the flow inside the melt is dominated by thermal buoyancy.

IWMCG-10 in Xi'an China, Oct 16-19, 2022