

A Few Progress in Predicting Solidification Kinetics Using the Time-Dependent Ginzburg-Landau Solidification Theory

Yashen Wang, Zun Liang, Xin Zhang, Xianqi Xu and Yang Yang School of Physics and Electronic Science, East China Normal University

Introduction

The crystal–melt interface (CMI) kinetic coefficient $\mu_{\hat{n}}$ is one of the key parameters govern the solidification process. It is defined as the constant of proportionality between the steady-state solidification interface velocity $V_{\hat{n}}$ and the degree of the interface undercooling ΔT . The anisotropy of kinetic coefficient among different CMI orientations, plays a leading role in the solidification microstructure evolution.

The TDGL Theory

Wu et al [Phys. Rev. B 91, 014107 (2015)] developed the time-dependent Ginzburg-Landau (TDGL) theory of solidification kinetics to quantitatively predict $\mu_{\hat{n}}$ for BCC systems,

$$\mu_{\hat{n}} = \frac{L}{k_B T_m^2 A_{\hat{n}}}, \quad A_{\hat{n}} = \int dz \left[\varsigma \sum_{\vec{K}_i} \left(\frac{du_i}{dz} \right)^2 \right] \text{ (for BCC)}$$

where L is the latent heat of fusion per particle, $A_{\hat{n}}$ is the anisotropy factor, u_i is called the Ginzburg–Landau (GL) order parameter, and the dissipative time constant $\varsigma = \tau(\left|\vec{K}_{\langle 110\rangle}\right|)/S(\left|\vec{K}_{\langle 110\rangle}\right|).$

FIG.1 Dendrite morphology for the crystal grown from melt, predicted by phase field simulations in [Interface Sci. 10, 121 (2002)], employing different magnitudes of CMI kinetic and thermodynamic anisotropy.

Progress I : Theoretical Extension

We extended the TDGL theory to FCC and BCO CMI systems and verified it by comparing with the non-equilibrium molecular dynamics (NEMD) simulations of a model dipolar particles.[*Cryst. Growth Des.* 20, 7862 (2020)]. $\mu_{\hat{n}} = \frac{L}{k_B T_m^2 A_{\hat{n}}}$

$$A_{\hat{n}} = \int dz \left[\zeta_{1a} \sum_{\vec{K}_{i}, u_{a}} \left(\frac{du_{i}}{dz} \right)^{2} + \zeta_{1b} \sum_{\vec{K}_{i}, u_{b}} \left(\frac{du_{i}}{dz} \right)^{2} + \zeta_{2a} \sum_{\vec{G}_{i}, v_{a}} \left(\frac{dv_{i}}{dz} \right)^{2} + \zeta_{2b} \sum_{\vec{G}_{i}, v_{b}} \left(\frac{dv_{i}}{dz} \right)^{2} + \zeta_{3} \frac{1}{\varepsilon_{0}(\varepsilon_{r} - 1)n_{0}k_{B}|T_{C} - T_{m}|} \left(\frac{do}{dz} \right)^{2} \right]$$

Represents our formalism of TDGL theory for the crystal growth kinetic coefficients for the dipolar particle system. ς are the dissipative time constants, u, v, o are the Ginzburg–Landau (GL) order parameters. The vacuum and relative dielectric permittivities, are included to count the free energy dissipation due to polarization concurrently process with the solidification. T_C is the Curie temperature.

$$\overline{\xi}$$
 4.4

	${ m SS^{MD}}\ k_{ m B}/\sqrt{marepsilon}$	Fe ^{MD} cm s ⁻¹ K ⁻¹	${ m Mo^{MD}} { m cm} { m s}^{-1} { m K}^{-1}$	V^{MD} cm s ⁻¹ K ⁻¹	Fe ^{GL} cm s ⁻¹ K ⁻¹	${ m SS^{GL}} \ k_{ m B}/\sqrt{marepsilon}$
μ_{100}	2.59(9)	78(5)	11(1)	9(2)	67(6)	2.4(1)
<i>u</i> ₁₁₀	2.54(9)	62(4)	16(3)	12(5)	60(5)	2.2(1)
ι_{111}	2.13(7)	62(2)	12(3)	10(1)	51(5)	1.9(1)
u_{100}/μ_{110}	1.02(5)	1.3(1)	0.7(2)	0.8(3)	1.1(1)	1.1(1)
μ_{100}/μ_{111}	1.2(1)	1.26(9)	0.9(2)	0.9(2)	1.3(2)	1.2(1)
μ_{110}/μ_{111}	1.2(1)	0.99(8)	1.3(4)	1.2(5)	1.2(1)	1.2(1)

 TABLE 1 MD and GL prediction of the kinetic coefficients for a few BCC materials

Left: method by [Acta Mater. 198, 281 (2020)], Right: our method

Progress II : Kinetic Anisotropy of BCC

We predicted the kinetic coefficients for the BCC soft-sphere (SS) model systems with inverse-power repulsive potential through NEMD simulations and the TDGL theory respectively, and compared the results with the previous reported data of BCC metal systems, see in TABLE I.[J. Phys.: Condens. Matter 34, 264004 (2022)]

We introduce an algorithm for determining the density for relaxation times the interfacial liquids at CMI and its benefit in levitating the precision in the TDGL theory prediction of $\mu_{\hat{n}}$ and the kinetic both anisotropy.[J. Chem. Phys. 157, 084709 (2022)]

> FIG.7 Local density relaxation time profiles

	$\mu_{\hat{n}}^{ ext{MD}}$	$\mu^{ m GL}_{\hat{n},{ m M}}$	$\mu^{ m GL}_{\hat{n},{ m I}}$	$\mu^{\dagger { m GL}}_{\hat{n},{ m I}}$
$\mu_{100}({ m cm/s/K})$	78(5)	65(6)	90(4)	82(4)
$\mu_{110}({ m cm/s/K})$	62(4)	60(5)	59(4)	58(4)
$\mu_{111}({ m cm/s/K})$	62(2)	51(5)	50(2)	63(3)
μ_{100}/μ_{110}	1.27(16)	1.08(13)	1.53(12)	1.41(12)
μ_{100}/μ_{111}	1.26(12)	1.27(17)	1.80(10)	1.30(9)
μ_{110}/μ_{111}	0.99(8)	1.18(15)	1.18(9)	0.92(7)

TABLE 2Summary of BCC Fe CMI the kinetic coefficients and its anisotropy

The calculations show the universality of the Ginzburg-Landau (GL) order parameter in same cubic structure systems. And a hypothesis that the density relaxation times for the interface melt phases to be anisotropic and material-dependent is then proposed.

Future Directions

- To examine whether the local collective dynamics is material dependent, for the ulletfinal clarification for the reason why a similar solidification kinetic anisotropy is generally hold for FCC CMIs, yet not for BCC CMIs.
- Extend TDGL solidification theory to binary alloy system.
- Through the quantitative TDGL solidication theory, link the interatomic interaction to the CMI kinetic coefficients.

Acknowledgements

NSFC (11504110 and 11874147), State Key Laboratory of Advanced Special Steel in Shanghai U (SKLASS 2021-10), State Key Laboratory of Solidification Processing in NWPU (SKLSP202105).

Email : 1422715338@qq.com

